Thermal effect on larval development of the European stag beetle, Lucanus cervus

Arno Thomaes, Paul Hendriks, Maria Fremlin


Conservation of the threatened and protected European stag beetle (Lucanus cervus) mainly focuses on the availability of dead wood as larval habitat. However, as the larval ecology of this species remains poorly studied, less attention has been given to other habitat requirements such as ambient temperatures for the development of the larvae. To design proper guidelines for the preservation of this iconic species, the growth of stag beetle larvae is compared between outdoor containers under a warm sunny and those in a cold shady treatment. Populations originated from the Veluwe (Netherlands) and Colchester (United Kingdom). The shady microclimate led to lower temperatures, which resulted in higher larval weights before molting and an additional year to complete larval development for a part of the population. However, weights were lower than in the warm microclimate when comparing larvae from the same age. This is explained by the longer development time for the different stages. Finally, we found higher larval weights for larvae originating from the Veluwe (Netherlands) compared with larvae from Colchester (UK). We conclude that larvae of L. cervus can cope with shady, colder microclimates. Larval development time in general takes two to three years and depends on temperature. Larvae grow mainly in the warm season while weight remains constant, or even decreases, during the cold season with an approximate threshold between 10 to 15 C.


relative growth rate; larval development time; temperature effect; size variation; artificial breeding

Full Text:



Alaruikka D., Kotze D.J., Matveinen K. & Niemela J. (2002). Carabid beetle and spider assemblages along a forested urban-rural gradient in southern Finland. Journal of Insect Conservation 6: 195–206.

Campanaro A., Zapponi L., Hardersen S., Méndez M., Al Fulaij N., Audisio P., Bardiani M., Carpaneto G. M., Corezzola S., Della Rocca F., Harvey D., Hawes C., Kadej M., Karg J., Rink M., Smolis A., Sprecher E., Thomaes A., Toni I., Vrezec A. L., Zauli A., Zilioli M. & Chiari S. (2016). A European monitoring protocol for the stag beetle, a saproxylic flagship species. Insect Conservation and Diversity 9: 574–584.

Chefaoui R.M., Lobo J.M. & Hortal J. (2011). Effects of species traits and data characteristics on distribution models of threatened invertebrates. Animal Biodiversity and Conservation 34: 229–247.

Della Rocca F. & Milanesi P. (2020). Combining climate, land use change and dispersal to predict the distribution of endangered species with limited vagility. Journal of Biogeography 45: 1427–1438.

Della Rocca F., Bogliani G., & Milanesi P. (2017). Patterns of distribution and landscape connectivity of the stag beetle in a human-dominated landscape. Nature Conservation, Bulgaria 19: 19–37.

Foster C.W., Kelly C., Rainey J.J. & Holloway G.J. (2020). Effects of urbanisation and landscape heterogeneity mediated by feeding guild and body size in a community of coprophilous beetles. Urban Ecosystems 23: 1063–1077.

Fremlin M. (2012). Stag beetle sightings on false-acacia stumps. Nature in North-East Essex 2012: 76–80.

Fremlin M. (2013). Results of the “Stag beetle larval incidents in private gardens” survey. Essex Naturalist (New Series) 30: 94–106.

Fremlin M. & Hendriks P. (2014). Number of instars of Lucanus cervus (Coleoptera: Lucanidae) larvae. Entomologische Berichten 70: 115–120.

Harvey D. & Gange A.C. (2006). Size variation and mating success in the stag beetle, Lucanus cervus. Physiological Entomology 31: 218–226.

Harvey D., Gange A., Hawes C., Rink M., Abdehalden M., Al Fulaij N., Asp T., Ballerio A., Bartolozzi L., Brustel H., Cammaerts R., Carpaneto G.M., Cederberg B., Chobot K., Cianferoni F., Drumont A., Ellwanger G., Ferreira S., Grosso-Silva J.M., Gueorguiev B., Harvey W., Hendriks P., Istrate P., Jansson N., Jelaska L.S., Jendek E., Jović M., Kervyn T., Krenn H.W., Kretschmer K., Legakis A., Lelo S., Moretti M., Merkl O., Palma R.M., Neculiseanu Z., Rabitsch W., Rodríguez S.M., Smit J.T., Smith M., Sprecher-Uebersax E., Telnov D., Thomaes A., Thomsen P.F., Tykarski P., Vrezec A., Werner S. & Zach P. (2011). Bionomics and distribution of the stag beetle, Lucanus cervus (L.) across Europe. Insect Conservation and Diversity 4: 23–38.

Hawes C. (2009). The stag beetle: Some aspects of larval ecology. White Admiral 73: 20–23.

Hendriks P. (2019). Life cycle length of the lesser stag beetle (Coleoptera: Lucanidae: Dorcus parallelipipedus). Entomologische Berichten 79: 208–216.

Hendriks P. & Méndez M. (2018). Larval feeding ecology of the stag beetle Lucanus cervus (Coleoptera: Lucanidae). Entomologische Berichten 78: 205–217.

Katušić L., Jelaska S.D. & Jelaska L.Š. (2017). Monitoring of saproxylic beetles in Croatia: following the path of the stag beetle. Nature Conservation, Bulgaria 19: 39–56.

Klausnitzer B. (1995). Die Hirschkäfer: Lucanidae. Spektrum Akademischer Verlag, Heidelberg.

Lai J. & Ko H.P. (2008). For the Love of Rhinoceros and Stag Beetles: Second edition. PSK, Taiwan.

Magura T., Tothmeresz B. & Lovei G.L. (2006). Body size inequality of carabids along an urbanisation gradient. Basic and Applied Ecology 7: 472–82.

Méndez M. & Thomaes A. (2020). Biology and conservation of the European stag beetle: recent advances and lessons learned. Insect Conservation and Diversity 14: 271–284.

Neven L.G., Duman J.G., Beals J.M. & Castellino F.J. (1986). Overwintering adaptations of the stag beetle, Ceruchus piceus: removal of ice nucleators in the winter to promote supercooling. Journal of Comparative Physiology 156: 707–716.

Nieto A. & Alexander K.N.A. (2010). European Red List of Saproxylic Beetles. Publications Office of the European Union, Luxembourg.

Pawlowski J. (1961). Próchnojady blazkorozne w biocenozie leśnej Polski – Lamellicornes cariophages in forest biocenosis of Poland. Ekologia Polska Seria A 9: 355–437.

Percy C., Bassford G. & Keeble V. (2000). Findings of the 1998 National Stag Beetle Survey. People’s Trust for Endangered Species, London.

Pinheiro J., Bates D., Debroy S., Sarkar D. & R Core Team (2021). nlme: Linear and Nonlinear Mixed Effects Models. R package version 3.1-152. Available from [accessed 20 January 2022].

R Core Team (2019). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing: Vienna.

Radnai F. (1995). Un élevage de “cerf-volant” Lucanus cervus Linné, 1758 (Coleoptera, Lucanidae). Insectes 98: 9–12.

Rink M. & Sinsch U. (2008). Bruthabitat und larvalentwicklung des Hirschkäfers Lucanus cervus (Linnaeus, 1758) (Coleoptera: Lucanidae). Entomologische Zeitschrift 118: 229–236.

Romiti F., De Zan L.R., de Gasperis S.R., Tini M., Scaccini D., Anaclerio M. & Carpaneto G.M. (2017). Latitudinal cline in weapon allometry and phenology of the European stag beetle. Nature Conservation, Bulgaria 19: 57–80.

Smith M. (2003). National Stag Beetle Survey 2002. People’s Trust for Endangered Species, London.

Songvorawit N., Butcher B.A. & Chaisuekul C. (2018). Captive breeding reveals larval performance and adult body size differences between two geographical populations of the stag beetle Aegus chelifer chelifer (Coleoptera: Lucanidae). Journal of Asia-Pacific Entomology 21: 708–715.

Sprecher-Uebersax E. (2001). Studien zur Biologie und Phänologie des Hirschkäfers im Raum Basel, mit Empfehlungen von Schutzmassnahmen zur Erhaltung und Förderung des Bestandes in der Region (Coleoptera: Lucanidae, Lucanus cervus L.). Universität Basel, Basel.

Thomaes A., Kervyn T. & Maes D. (2008). Applying species distribution modelling for the conservation of the threatened saproxylic Stag Beetle (Lucanus cervus). Biological Conservation 141: 1400–1410.

Thomaes A., Dhont P., Dekeukeleire D. & Vandekerkhove K. (2018). Dispersal behaviour of female stag beetles (Lucanus cervus) in a mosaic landscape: when should I stay and where should I go. Insect Conservation and Diversity 11: 523–533.

Tini M., Bardiani M., Campanaro A., Mason F., Audisio P. & Carpaneto G.M. (2017). Detection of stag beetle oviposition sites by combining telemetry and emergence traps. Nature Conservation, Bulgaria 19: 81–96.

Ulrich W., Komosinski K. & Zalewski M. (2008). Body size and biomass distributions of carrion visiting beetles: do cities host smaller species? Ecological Research 23: 241–248.

Wood S.N. (2017). Generalized Additive Models: An Introduction with R (2nd edition). Chapman and Hall/CRC, Boca Raton.



  • There are currently no refbacks.

The Royal Belgian Society of Zoology acknowledges the Universitarian Foundation of Belgium and the National Fund of Scientific Research for their financial support in publishing the Belgian Journal of Zoology.