Do substrate roughness and gap distance impact gap-bridging strategies in arboreal chameleons?
Abstract
Keywords
Full Text:
PDFReferences
Ali S.M. (1947). Studies on the anatomy of the tail in Sauria and Rhynchocephalia. Proceedings of the Indiana Academy of Science 28: 151–165. https://doi.org/10.1007/BF03049956
Andrews R.M. (2008). Lizards in the slow lane: thermal biology of chameleons. Journal of Thermal Biology 33: 57–61. https://doi.org/10.1016/j.jtherbio.2007.10.001
Bergmann P.J., Lessard S. & Russel A.P. (2003). Tail growth in Chamaeleo dilepis (Sauria: Chamaeleonidae): functional implications of segmental patterns. Journal of Zoology 261: 417–425. https://doi.org/10.1017/S095283690300428X
Bickel R. & Losos J.B. (2002). Patterns of morphological variation and correlates of habitat use in Chameleons. Biological Journal of the Linnean Society 76: 91–103. https://doi.org/10.1111/j.1095-8312.2002.tb01717.x
Byrnes G. & Jayne B.C. (2012). The effects of three-dimensional gap orientation on bridging performance and behavior of brown tree snakes (Boiga irregularis). Journal of Experimental Biology 215: 2611–2620. https://doi.org/10.1242/jeb.064576
Carter A.J., Heinsohn R.I., Goldizen A.W. & Biro P.A. (2012). Boldness, trappability and sampling bias in wild lizards. Animal Behavior 83: 1051–1058. https://doi.org/10.1016/j.anbehav.2012.01.033
Cartmill M. (1985). Climbing. In: Hildebrand M., Bramble D.M., Liem K.F. & Wake D.B. (eds) Functional Vertebrate Morphology: 73–88. Belknap Press, Cambridge.
Da Silva J., Herrel A., Measey G.J., Vanhooydonck B. & Tolley K.A. (2014). Linking microhabitat structure, morphology and locomotor performance traits in a recent radiation of dwarf chameleons (Bradypodion). Functional Ecology 28: 702–713. https://doi.org/10.1111/1365-2435.12210
Fischer S.M., Krause C. & Lilje K.E. (2010). Evolution of chameleon locomotion, or how to become arboreal as a reptile. Zoology 113: 67–74. https://doi.org/10.1016/j.zool.2009.07.001
Gans C. (1967). The chameleon. Natural History 76: 52–59.
Graham M. & Socha J.J. (2020). Going the distance: the biomechanics of gap-crossing behaviors. Journal of Experimental Zoology A: Ecological and Integrative Physiology 333: 60–73. https://doi.org/10.1002/jez.2266
Herrel A. & Gibb A.C. (2006a). Ontogeny of performance in vertebrates. Physiological and Biochemical Zoology 79: 1–6. https://doi.org/10.1086/498196
Herrel A. & O’reily J.C. (2006b). Ontogenetic scaling of bite force in lizards and turtles. Physiological and Biochemical Zoology 79: 31–42. https://doi.org/10.1086/498193
Herrel A., Measey G.J., Vanhooydonck B. & Tolley K.A. (2011). Functional consequences of morphological differentiation between populations of the Cape Dwarf chameleon (Bradypodion pumilum). Biological Journal of the Linnean Society 104: 692–700. https://doi.org/10.1111/j.1095-8312.2011.01764.x
Herrel A., Tolley K.A., Measey G.J., Da Silva J.M., Potgieter D.F., Boller E., Boistel R. & Vanhooydonck B. (2012). Slow but tenacious: an analysis of running and gripping performance in chameleons. Journal of Experimental Biology 216: 1025–1030. https://doi.org/10.1242/jeb.078618
Hoefer K.M. & Jayne B.C. (2013). Three-dimensional locations of destinations have species-dependent effects on the choice of paths and the gap-bridging performance of arboreal snakes. Journal of Experimental Zoology A: Ecological Genetics and Physiology 319: 124–137. https://doi.org/10.1002/jez.1777
Khannoon E.R., Eindlein T., Russel A.P. & Autumn K. (2014). Experimental evidence for friction-enhancing integumentary modifications of chameleons and associated functional and evolutionary implications. Proceedings of the Royal Society B. 281 (1775). https://doi.org/10.1098/rspb.2013.2334
Luger A.M., Ollevier A., De Kegel B., Herrel A. & Adriaens D. (2020). Is variation in tail vertebral morphology linked to habitat use in chameleons? Journal of Morphology 281: 229–239. https://doi.org/10.1002/jmor.21093
Measey G.J., Hopkins K.P. & Tolley K.A. (2009). Morphology, ornaments and performance in two chameleon ectomorphs: is the casque bigger than the bite? Zoology 112: 217–226. https://doi.org/10.1016/j.zool.2008.09.005
Meyers J.J., Herrel A. & Birch J. (2002). Scaling of morphology, bite force, and feeding kinematics in an iguanian and a scleroglossan lizard. In: Aerts P., D’aout K., Herrel A. & Van Damme R. (eds) Topics in Functional and Ecological Vertebrate Morphology: 47–62. Shaker Publishing, Maastricht.
Peterson J.A. (1984). The locomotion of Chamaeleo (Reptilia: Sauria) with particular reference to the forelimb. Journal of Zoology 202: 1–42. https://doi.org/10.1111/j.1469-7998.1984.tb04286.x
Spinner M., Westhoff G. & Gorb S.N. (2014). Subdigital setae of chameleon feet: friction-enhancing microstructures for a wide range of substrate roughness. Scientific Reports 4 (5481). https://doi.org/10.1038/srep05481
Thorpe S.K.S., Holder R. & Crompton R.H. (2009). Orangutans employ unique strategies to control branch flexibility. Proceedings of the National Academy of Sciences 106: 12646–12651. https://doi.org/10.1073/pnas.0811537106
Zippel K.C. & Glor R.E. (1999). On caudal prehensility and phylogenetic constraint in lizards: the influence of ancestral anatomy on function in Corucia and Furcifer. Journal of Morphology 239: 143–155. https://doi.org/fw4mnr
DOI: https://doi.org/10.26496/bjz.2021.83
Refbacks
- There are currently no refbacks.

The Royal Belgian Society of Zoology acknowledges the Universitarian Foundation of Belgium and the National Fund of Scientific Research for their financial support in publishing the Belgian Journal of Zoology.