How many fish could be vocal? An estimation from a coral reef (Moorea Island)

Eric Parmentier, Frédéric Bertucci, Marta Bolgan, David Lecchini

Abstract


A recurrent question arising in fish bioacoustics research concerns the number of vocal fish species that may exist. Although it is not possible to provide a precise globally valid number, an estimation based on recordings already collected at coral reefs (Moorea) and on morphological approaches indicates that approximately half of the fish families of this particular environment has at least one known sound-producing species. In light of this, acoustic behaviour should be fully considered in biology, ecology and management plans as it may provide information on a consistent portion of fish biodiversity. Fish bioacoustics has switched from anecdotal reports to long-term, large-scale monitoring studies, capable of providing high resolution information on fish populations’ composition and dynamics. This information is vital for successful management plans in our quickly changing seas.

Keywords


acoustic; biodiversity; monitoring; sonic; teleost

Full Text:

PDF

References


Amorim M.C.P., Vasconcelos R.O. & Fonseca P.J. (2015). Fish sounds and mate choice. In: Ladich F. (ed.) Sound Communication in Fishes: 1–33. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1846-7_1

Bertucci F., Maratrat K., Berthe C., Besson M., Guerra A.S., Raick X., Lerouvreur F., Lecchini D. & Parmentier E. (2020). Local sonic activity reveals potential partitioning in a coral reef fish community. Oecologia 193: 125–134. https://doi.org/10.1007/s00442-020-04647-3

Bolgan M. & Parmentier E. (2020). The unexploited potential of listening to deep-sea fish. Fish and Fisheries 21: 1238–1256. https://doi.org/10.1111/faf.12493

Bradbury J.W. & Vehrencamp S.L. (1998). Principles of Animal Communication. Sinauer Associates, Inc., Sunderland, Massachusetts.

Connaughton M.A., Fine, M.L. & Taylor M.H. (1997). The effects of seasonal hypertrophy and atrophy on fiber morphology, metabolic substrate concentration and sound characteristics of the weakfish sonic muscle. The Journal of Experimental Biology 200: 2449–2457.

Cousteau J.Y. & Dumas F. (1953). The Silent World. Harper and Brothers, New York.

De Jong K., Bouton N. & Slabbekoorn H. (2007). Azorean rock-pool blennies produce size-dependent calls in a courtship context. Animal Behaviour 74: 1285–1292. https://doi.org/10.1016/j.anbehav.2007.02.023

Desiderà E., Guidetti P., Panzalis P., Navone A., Valentini-Poirrier C.-A., Boissery P. & Gervaise C. (2019). Acoustic fish communities: sound diversity of rocky habitats reflects fish species diversity . Marine Ecology Progress Series 608: 183–197. https://doi.org/10.3354/meps12812

Fine M.L. & Parmentier E. (2015). Mechanisms of sound production. In: Ladich F. (ed.) Sound Communication in Fishes: 77–126. Springer, Vienna.

Fish M.P. & Mowbray H.M. (1970). Sounds of Western North Atlantic Fishes. The Johns Hopkins Press, Baltimore.

Fish M.P., Kelsey A.S.J. & Mowbray W.H. (1952). Studies on the production of underwater sound by North Atlantic coastal fishes. Journal of Marine Research 11: 180–193.

Frédérich B., Olivier D., Litsios G., Alfaro M.E. & Parmentier E. (2014). Trait decoupling promotes evolutionary diversification of the trophic and acoustic system of damselfishes. Proceedings of the Royal Society B: Biological Sciences 281: 20141047. https://doi.org/10.1098/rspb.2014.1047

Froese R. & Pauly D. (2019). FishBase. World Wide Web electronic publication. [Online.] Available from www.fishbase.org [accessed February 2019].

Hallacher L.E. (1974). The comparative morphology of extrinsic gasbladder musculature in the scorpionfish genus Sebastes (Pisces: Scorpaenidae). Proceedings of the California Academy of Sciences 40: 59–86.

Jublier N., Bertucci F., Kéver L., Colleye O., Ballesta L., Nemeth R.S., Lecchini D., Rhodes K.L. & Parmentier E. (2019). Passive monitoring of phenological acoustic patterns reveals the sound of the camouflage grouper, Epinephelus polyphekadion. Aquatic Conservation: Marine and Freshwater Ecosystems 30: 42–52. https://doi.org/10.1002/aqc.3242

Lagardère J.P. & Mariani A. (2006). Spawning sounds in meagre Argyrosomus regius recorded in the Gironde estuary, France. Journal of Fish Biology 69: 1697–1708. https://doi.org/10.1111/j.1095-8649.2006.01237.x

Lobel P.S., Kaatz I.M. & Rice A.N. (2010). Acoustical behavior of coral reef fishes. In: Cole K.S. (ed.) Reproduction and Sexuality in Marine Fishes: Patterns and Procesess: 307–386. University of California Press, Berkeley, CA. https://doi.org/10.1525/california/9780520264335.003.0010

Malavasi S., Gkenas C., Leonardos I., Torricelli P. & McLennan D.A. (2012). The phylogeny of a reduced “sand goby” group based on behavioural and life history characters. Zoological Journal of the Linnean Society 165: 916–924. https://doi.org/10.1111/j.1096-3642.2012.00832.x

Moulton J.M. (1958). The acoustical behavior of some fishes in the Bimini area. Biological Bulletin 114: 357–374. https://doi.org/10.2307/1538991

Moulton J.M. (1963). Acoustic behaviour of fishes. In: Busnel R.G. (ed.) Acoustic Behaviour of Animals: 687–693. Elsevier Publishing Company, Amsterdam/London/New York.

Parmentier E., Bouillac G., Dragicevic B., Dulcic J. & Fine M.L. (2010). Call properties and morphology of the sound-producing organ in Ophidion rochei (Ophidiidae). The Journal of Experimental Biology 213: 3230–3236. https://doi.org/10.1242/jeb.044701

Parmentier E., Kéver L., Boyle K., Corbisier Y.-E., Sawelew L. & Malavasi S. (2013). Sound production mechanism in Gobius paganellus (Gobiidae). The Journal of Experimental Biology 216: 3189–3199. https://doi.org/10.1242/jeb.087205

Parmentier E., Lanterbecq D. & Eeckhaut I. (2016). From commensalism to parasitism in Carapidae (Ophidiiformes): Heterochronic modes of development? PeerJ 2016: e1786. https://doi.org/10.7717/peerj.1786

Picciulin M., Kéver L., Parmentier E. & Bolgan M. (2019). Listening to the unseen: passive acoustic monitoring reveals the presence of a cryptic fish species. Aquatic Conservation: Marine and Freshwater Ecosystems 29: 202–210. https://doi.org/10.1002/aqc.2973

Raick X., Lecchini D., Kéver L., Colleye O., Bertucci F. & Parmentier E. (2018). Sound production mechanism in triggerfish (Balistidae): a synapomorphy. The Journal of Experimental Biology 221: jeb.168948. https://doi.org/10.1242/jeb.168948

Rountree R.A., Juanes F. & Bolgan M. (2018). Air movement sound production by alewife, white sucker, and four salmonid fishes suggests the phenomenon is widespread among freshwater fishes. PLoS ONE 13: e0204247. https://doi.org/10.1371/journal.pone.0204247

Ruppé L., Clément G., Herrel A., Ballesta L., Décamps T., Kéver L. & Parmentier E. (2015). Environmental constraints drive the partitioning of the soundscape in fishes. Proceedings of the National Academy of Sciences 112: 6092–6097. https://doi.org/10.1073/pnas.1424667112

Siu G., Bacchet P., Bernardi G., Brooks A.J., Carlot J., Causse R., Claudet J., Clua E., Delrieu-Trottin E., Espiau B., Harmelin-Vivien M., Keith P., Lecchini D., Madi Moussa R., Parravicini V., Planes S., Ponsonnet C., Randall J.E., Sasal P., Taquet M., Williams J.T. & Galzin R. (2017). Shore fishes of French Polynesia. Cybium 41: 245–278. https://doi.org/10.26028/cybium/2017-413-003

Tricas T.C. & Boyle K.S. (2014). Acoustic behaviors in Hawaiian coral reef fish communities. Marine Ecology Progress Series 511: 1–16. https://doi.org/10.3354/meps10930

Van der Laan R. & Fricke R. (2019). Eschmeyer’s Catalog of Fishes: Family-Group Names. Available from http://www.calacademy.org/scientists/catalog-of-fishes-family-group-names/




DOI: https://doi.org/10.26496/bjz.2021.82

Refbacks

  • There are currently no refbacks.


The Royal Belgian Society of Zoology acknowledges the Universitarian Foundation of Belgium and the National Fund of Scientific Research for their financial support in publishing the Belgian Journal of Zoology.