Season as a discriminating factor for faecal metabolomic composition of great tits (Parus major)

Roschong Boonyarittichaikij, Beata Pomian, Daan Daan Dekeukeleire, Luc Lens, Dries Bonte, Kris Verheyen, Frank Pasmans, An Martel, Elin Verbrugghe


The microbiome of wild birds has been associated with health status and risk of disease development, but underlying metabolomic mechanisms are still unknown. Metabolites produced by microbial organisms may affect host metabolic processes and by doing so influence host health. Here we provide for the first time data on the faecal metabolome of wild great tits (Parus major) by analyzing metabolites associations with age, sex, season and body condition. Using untargeted metabolomics, we analyzed faecal samples from 112 great tits that were caught in a deciduous forest fragment in Flanders (Belgium) during late autumn and 19 animals that were re-captured during early spring. In this study, no significant associations between the faecal metabolites and age, sex and body condition were observed. However, season was shown to be a discriminating factor for the metabolomic composition of great tits, suggesting an impact of environmental factors.


metabolomics; great tit; faeces; season; scaled mass index

Full Text:



Beauclercq S., Lefèvre A., Montigny F., Collin A., Tesseraud S., Leterrier C., Emond P. & Guilloteau L.A. (2019). A multiplatform metabolomic approach to characterize fecal signatures of negative postnatal events in chicks: a pilot study. Journal of Animal Science and Biotechnology 10: 21.

Cirulli E.T., Guo L., Swisher C.L., Shah N., Huang L., Napier L.A., Kirkness E.F., Spector T.D., Caskey C.T., Thorens B., Venter J.C., Telenti A. (2019). Profound perturbation of the metabolome in obesity is associated with health risk. Cell Metabolism 29: 488–500.

Dawson W.R. (1985). Relation of oxygen consumption and evaporative water loss to temperature in the cardinal. Physiological Zoology 31: 37–48.

Dorr B.S., Hanson-Dorr K. C., Assadi-Porter F.M., Selen E.S., Healy K.A. & Horak K.E. (2019). Effects of repeated sublethal external exposure to deep water horizon oil on the avian metabolome. Scientific Reports 9: 1–12.

Golet G.H. & Irons D.B. (1999). Raising young reduces body condition and fat sotres in Black-legged Kittiwakes. Oecologia 120: 530–538.

Gregory K.E., Bird S.S., Gross V.S., Marur V.R., Lazarev A.V., Walker W.A. & Kristal B.S. (2013). Method development for fecal lipidomics profiling. Analytical Chemistry 85: 1114–112.

Grond K., Sandercock B.K., Jumpponen A. & Zeglin L.H. (2018). The avian gut microbiota: community, physiology and function in wild birds. Journal of Avian Biology 49: e01788.

Hart J.S. (1962). Seasonal acclimatization in four species of small wild birds. Physiological Zoology 35: 224–236.

Kohl K.D., Amaya J., Passement C.A., Dearing M.D. & McCue M.D. (2014). Unique and shared responses of the gut microbiota to prolonged fasting: a comparative study across five classes of vertebrate hosts. FEMS Microbiology Ecology 90: 883–894.

Lamichhane S., Sen P., Dickens A.M., Orešič M. & Bertram H.C. (2018). Gut metabolome meets microbiome: A methodological perspective to understand the relationship between host and microbe. Methods 149: 3–12.

Le Gall G., Noor S.O., Ridgway K., Scovell L., Jamieson C., Johnson I.T., Colquhoun I.J., Kemsley E.K. & Narbad A. (2011). Metabolomics of fecal extracts detects altered metabolic activity of gut microbiota in ulcerative colitis and irritable bowel syndrome. Journal of Proteome Research 10: 4208–4218.

Ley R.E., Turnbaugh P.J., Klein S. & Gordon J.I. (2006). Microbial ecology: human gut microbes associated with obesity. Nature 444: 1022–1023.

Li D., Gao c., Zhang F., Yang R., Lan C., Ma Y. & Wang J. (2020). Seven facts and five initiatives for gut microbiome research. Protein & Cell 11: 391–400.

Li Z., Quan G., Jiang X., Yang Y., Ding X., Zhang D., Wang X., Hardwidge P.R., Ren W. & Zhu G. (2018). Effects of metabolites derived from gut microbiota and hosts on pathogens. Frontiers in Cellular and Infection Microbiology 8: 314.

Linnaeus D. (1758). Systema Naturae per regna tria naturae, secundum classes, ordines, genera, species, cum characteribus, differentiis, synonymis, locis. Editio decima, reformata [10th revised edition], vol. 1. Laurentius Salvius, Holmiae.

Marcobal A., Kashyap P.C., Nelson T.A., Aronov P.A., Donia M.S., Spormann A., Fischbach M.A. & Sonnenburg J.L. (2013). A metabolomic view of how the human gut microbiota impacts the host metabolome using humanized and gnotobiotic mice. The ISME Journal 7: 1933–1943.

Miller D.S. (1939). A study of the physiology of the sparrow thyroid. Journal of Experimental Zoology 80: 259–281.

Pedersen H.K., Gudmundsdottir V., Nielsen H.B., Hyotylainen T., Nielsen T., Jensen B.A.H., Forslund K., Hildebrand F., Prifti E., Falony G., Le Chatelier E., Levenez F., Doré J., Mattila I., Plichta D.R., Pöhö P., Hellgren L.I., Arumugam M., Sunagawa S., Vieira-Silva S., Jørgensen T., Holm J.B., Trošt K., Consortium M., Kristiansen K., Brix S., Raes J., Wang J., Hansen T., Bork P., Brunak S., Oresic M., Ehrlich SD. & Pedersen O. (2016). Human gut microbes impact host serum metabolome and insulin sensitivity. Nature 535: 376–381.

Peig J. & Green A.J. (2009). New perspectives for estimating body condition from mass/length data: the scaled mass index as an alternative method. Oikos 118: 1883–1891.

Rouffaer L.O., Strubbe D., Teyssier A., Salleh Hudin N., Van den Abeele A.-M., Cox I., Haesendonck R., Delmée M., Haesebrouck F., Pasmans F., Lens L. & Martel A. (2017). Effects of urbanization on host-pathogen interactions, using Yersinia in house sparrows as a model. PLoS ONE 12: e0189509.

Rytkönen S., Vesterinen E.J., Westerduin C., Leviäkangas T., Vatka E., Mutanen M., Välimäki P., Hukkanen M., Suokas M. & Orell M. (2018). From feces to data: A metaborcoding method for analyzing consumed and available prey in a bird-insect food web. Ecology and Evolution 9: 631–639.

Schrimpe-Rutledge A.C., Codreanu S.G., Sherrod S.D. & McLean J.A. (2016). Untargeted metabolomics strategies – challenges and emerging directions. Journal of the American Society for Mass Spectrometry 27: 1897–1905.

Svensson L. (1992). Identification Guide to European Passerines. British Trust for Ornithology, Thetford, UK.

Swanson D.L. (2010). Seasonal metabolic variation in birds: functional and mechanistic correlates. In: Thompson C.F. (ed.) Current Ornithology. Vol. 17: 75–129. Springer, New York.

Tang Z.Z., Chen G., Hong Q., Huang S., Smith H.M., Shah R.D., Scholz M. & Ferguson J.F. (2019). Multi-omic analysis of the microbiome and metabolome in healthy subjects reveals microbiome-dependent relationships between diet and metabolites. Frontiers in Genetics 10: 454.

Teyssier A., Lens L., Matthysen E. & White J. (2018a). Dynamics of gut microbiota diversity during the early development of an avian host: evidence from a cross-foster experiment. Frontiers in Microbiology 9: 1524.

Teyssier A., Rouffaer L. O., Saleh Hudin N., Strubbe D., Matthysen E., Lens L. & White J. (2018b). Inside the guts of the city: Urban-induced alterations of the gut microbiota in a wild passerine. The Science of the Total Environment 612: 1276–1286.

Treuren W.V. & Dodd D (2020). Microbial contribution to the human metabolome: implications for health and disease. The Annual Review of Pathology: Mechanisms of Disease 15: 345–69.

Turnbaugh P.J., Hamady M., Yatsunenko T., Cantarel B.L., Duncan A., Ley R.E., Sogin M.L., Jones W.J., Roe B.A., Affourtit J.P., Egholm M., Henrissat B., Heath A.C., Knight R. & Gordon J.I. (2009). A core gut microbiome in obese and lean twins. Nature 457: 480–484.

van den Berg R.A., Hoefsloot H.C., Westerhuis J.A., Smilde A.K. & van der Werf M.J. (2006). Centering, scaling, and transformations: improving the biological information content of metabolomics data. BMC Genomics 7: 142.

Vanden Bussche J., Marzorati M., Laukens D. & Vanhaecke L. (2015). Validated high resolution mass spectrometry-based approach for metabolomic fingerprinting of the human gut phenotype. Analytical Chemistry 87: 10927–10934.

van Dongen W.F., White J., Brandl H.B., Moodley Y., Merkling T., Leclaire S., Blanchard P., Danchin É., Hatch S.A. & Wagner R.H. (2013). Age-related differences in the cloacal microbiota of a wild bird species. BMC Ecology 13: 11.

Van Meulebroek L., Bussche J.V., De Clercq N., Steppe K. & Vanhaecke L. (2015). A meta-bolomics approach to unravel the regulating role of phytohormones towards carotenoid metabolism in tomato fruit. Metabolomics 11: 667–683.

Van Meulebroek L., De Paepe E., Vercruysse V., Pomian B., Bos S., Lapauw B. & Vanhaecke L. (2017). Holistic lipidomics of the human gut phenotype using validated ultra-high-performance liquid chromatography coupled to hybrid orbitrap mass spectrometry. Analytical Chemistry 89: 12502–1251.

Vel’ký M., Kaňuch P. & Krištín A. (2011). Food composition of wintering great tits (Parus major): habitat and seasonal aspects. Folia Zoologica 60: 228–236.

Vernocchi P., Del Chierico F. & Putignani L. (2016). Gut microbiota profiling: metabolomics based approach to unravel compounds affecting human health. Frontiers in Microbiology 7: 1144.

Videvall E., Strandh M., Engelbrecht A., Cloete S. & Cornwallis C.K (2017). Measuring the gut microbiome in birds: Comparison of faecal and cloacal sampling. Molecular Ecology Resources 18: 424–434.

Visconti A., Le Roy C.I., Rosa F., Rossi N., Martin T.C., Mohney R.P., Li W., de Rinaldis E., Bell J.T., Venter J.C., Nelson K.E., Spector T.D. & Falchi M. (2019). Interplay between the human gut microbiome and host metabolism. Nature Communications 10: 4505.

Zierer J., Jackson M.A., Kastenmüller G., Mangino M., Long T., Telenti A., Mohney R.P., Small K.S., Bell J.T., Steves C.J., Valdes A.M., Spector T.D. & Menni C. (2018). The fecal metabolome as a functional readout of the gut microbiome. Nature Genetics 50: 790–795.



  • There are currently no refbacks.

The Royal Belgian Society of Zoology acknowledges the Universitarian Foundation of Belgium and the National Fund of Scientific Research for their financial support in publishing the Belgian Journal of Zoology.