An ecophysiological discussion of trace element bioaccumulation in cultured Mytilus galloprovincialis

Jonathan Richir, Sylvie Gobert

Abstract


This is a Short Note without an abstract.

Keywords


mussel; trace element; bioaccumulation; ecophysiology

Full Text:

PDF

References


[1] Goldberg ED (1975). The mussel watch. A first step in global marine monitoring. Mar. Pollut. Bull., 6(7): 111-113.

[2] Guéguen M, Amiard J-C, Arnich N, Badot P-M, Claisse D et al. (2011). Shellfish and Residual Chemical Contaminants: Hazards, Monitoring, and Health Risk Assessment Along French Coasts, in: Whitacre, D. M. (Ed.), Reviews of Environmental Contamination and Toxicology Volume 213. Springer New York, 55-111.

[3] Andral B, Stanisiere JY, Sauzade D, Damier E, Thebault H et al. (2004). Monitoring chemical contamination levels in the Mediterranean based on the use of mussel caging. Mar. Pollut. Bull., 49(9-10): 704-712.

[4] Andral B & Tomasino C (2010). Réseaux Intégrateurs Biologiques. RINBIO 2009. Evaluation de la qualité des eaux basée sur l’utilisation de stations artificielles de moules en Méditerranée: résultats de la campagne 2009. Ifremer.

[5] Andral B, Galgani F, Tomasino C, Bouchoucha M, Blottiere C et al. (2011). Chemical contamination baseline in the Western basin of the Mediterranean sea based on transplanted mussels. Arch. Environ. Contam. Toxicol., 61(2): 261-271.

[6] Benedicto J, Andral B, Martínez-Gómez C, Guitart C, Deudero S et al. (2011). A large scale survey of trace metal levels in coastal waters of the Western Mediterranean basin using caged mussels (Mytilus galloprovincialis). J. Environ. Monit., 13(5): 1495-1505.

[7] Richir J & Gobert S (2014). The effect of size, weight, body compartment, sex and reproductive status on the bioaccumulation of 19 trace elements in rope-grown Mytilus galloprovincialis. Ecol. Indicators, 36: 33–47.

[8] Richir J & Gobert S (2014). A reassessment of the use of Posidonia oceanica and Mytilus galloprovincialis to biomonitor the coastal pollution in trace elements: New tools and tips. Mar. Pollut. Bull., 89: 390-406.

[9] Currie LA (1999). Nomenclature in evaluation of analytical methods including detection and quantification capabilities (IUPAC Recommendations 1995). Anal. Chim. Acta, 391(2): 105-126.

[10] Grinzaid EL, Zil’bershtein KI, Nadezhina LS & Yufa BY (1977). Terms and methods of estimating detection limits in various analytical methods. J. Anal. Chem. USSR, 32: 1678-1684.

[11] Lobel PB, Belkhode SP, Bajdik C, Jackson SE & Longerich HP (1992). General charac-teristics of the frequency distributions of element concentrations and of interelemental correlations in aquatic organisms. Mar. Environ. Res., 33(2): 111-126.

[12] Usero J, González-Regalado E & Gracia I (1996). Trace metals in the bivalve mollusc Chamelea gallina from the Atlantic coast of southern Spain. Mar. Pollut. Bull., 32(3): 305-310.

[13] Cossa D, Bourget E, Pouliot D, Piuze J & Chanut JP (1980). Geographical and seasonal variations in the relationships between trace metal content and body weight in Mytilus edulis. Mar. Biol., 58: 7-14.

[14] Saavedra Y, Gonzalez A, Fernandez P & Blanco J (2004). The effect of size on trace metal levels in raft cultivated mussels (Mytilus galloprovincialis). Sci. Total Environ., 318(1-3): 115-124.

[15] Mubiana VK, Vercauteren K & Blust R (2006). The influence of body size, condition index and tidal exposure on the variability in metal bioaccumulation in Mytilus edulis. Environ. Pollut., 144(1): 272-279.

[16] Burnham KP & Anderson DR (2002). Model selection and multimodel inference: A practical information-theoretic approach. Springer, New York.

[17] Kapustka LA, Clements WH, Ziccardi L, Paquin PR, Sprenger M et al. (2004). Issue paper on the ecological effects of metals. U.S. Environmental Protection Agency, Lexington, MA.

[18] Fattorini D, Notti A, Di Mento R, Cicero AM, Gabellini M et al. (2008). Seasonal, spatial and inter-annual variations of trace metals in mussels from the Adriatic sea: A regional gradient for arsenic and implications for monitoring the impact of off-shore activities. Chemosphere, 72(10): 1524-1533.

[19] Fattorini D, Notti A & Regoli F (2006). Characterization of arsenic content in marine organisms from temperate, tropical, and polar environments. Chem. Ecol., 22(5): 405-414.

[20] Amiard-Triquet C, Berthet B, Metayer C & Amiard JC (1986). Contribution to the ecotoxicological study of cadmium, copper and zinc in the mussel Mytilus edulis. II. Experimental study. Mar. Biol., 92(1): 7-13.

[21] Martincic D, Kwokal Z, Peharec Z, Margus D & Branica M (1992). Distribution of Zn, Pb, Cd and Cu between seawater and transplanted mussels (Mytilus galloprovincialis). Sci. Total Environ., 119: 211-230.

[22] Latouche YD & Mix MC (1981). Seasonal variation in soft tissue weights and trace metal burdens in the bay mussel, Mytilus edulis. Bull. Environ. Contam. Toxicol., 27(1): 821-828.

[23] Akberali HB, Earnshaw MJ & Marriott KRM (1985). The action of heavy metals on the gametes of the marine mussel, Mytilus edulis (L.) - II. Uptake of copper and zinc and their effect on respiration in the sperm and unfertilized egg. Mar. Environ. Res., 16(1): 37-59.

[24] Fitzpatrick JL, Nadella S, Bucking C, Balshine S & Wood CM (2008). The relative sensitivity of sperm, eggs and embryos to copper in the blue mussel (Mytilus trossulus). Comp. Biochem. Phys. C., 147(4): 441-449.

[25] Meistertzheim AL, Lejart M, Le Goïc N & Thébault MT (2009). Sex-, gametogenesis, and tidal height-related differences in levels of HSP70 and metallothioneins in the Pacific oyster Crassostrea gigas. Comp. Biochem. Physiol. A., 152(2): 234-239.




DOI: https://doi.org/10.26496/bjz.2016.39

Refbacks

  • There are currently no refbacks.


The Royal Belgian Society of Zoology acknowledges the Universitarian Foundation of Belgium and the National Fund of Scientific Research for their financial support in publishing the Belgian Journal of Zoology.