Eco-evolutionary partitioning metrics: a practical guide for biologists

Lynn Govaert

Abstract


It is well-known that ecological and evolutionary processes can occur on similar time scales resulting in eco-evolutionary dynamics. One of the main questions in eco-evolutionary dynamics involves the assessment of the relative contribution of evolution, ecology and their interaction in the eco-evolutionary change under study. This has led to the development of several methods aimed to quantify the contributions of ecology and evolution to observed trait change, here referred to as eco-evolutionary partitioning metrics. This study provides an overview on currently-used partitioning metrics with a focus on methods that can quantify evolutionary and non-evolutionary contributions to population and community trait change. I highlight key differences between these metrics found in previous studies. Additionally, I also provide a detailed comparison between the ‘Geber’ method and the reaction norm approach. Next, I provide a guideline for researchers to assess which metrics are best suited for their data, give an overview on the type of data needed for these metrics, and how this data can be collected with a focus on community data.

Keywords


Price equation; reaction norms; eco-evolutionary partitioning metrics; community ecology; trait change

References


Abrams P.A. & Matsuda H. (1997). Prey adaptation as a cause of predator- prey cycles. Evolution 51 (6): 1742–1750. https://doi.org/10.2307/2410997

Arnold A.J. & Fristrup K. (1982). The theory of evolution by natural selection: a hierarchical expansion. Paleobiology 8 (2): 113–129. https://doi.org/10.1017/S0094837300004462

Arseneau K.M., Driscoll C.T., Brager L.M., Ross K.A. & Cumming B.F. (2011). Recent evidence of biological recovery from acidification in the Adirondacks (New York, USA): a multiproxy paleolimnological investigation of Big Moose lake. Canadian Journal of Fisheries and Aquatic Sciences 68 (4): 575–592. https://doi.org/10.1139/f2011-003

Barraclough T.G. (2015). How do species interactions affect evolutionary dynamics across whole communities? Annual Review of Ecology, Evolution, and Systematics 46: 25–48. https://doi.org/10.1146/annurev-ecolsys-112414-054030

Bassar R.D., Ferriere R., Lopez-Sepulcre A., Marshall M.C., Travis J., Pringle C.M. & Reznick D.N. (2012). Direct and indirect ecosystem effects of evolutionary adaptation in the Trinidadian guppy (Poecilia reticulata). The American Naturalist 180 (2): 167–185. https://doi.org/10.1086/666611

Becks L., Ellner S.P., Jones L.E. & Hairston N.G. (2012). The functional genomics of an eco-evolutionary feedback loop: linking gene expression, trait evolution, and community dynamics. Ecology letters 15 (5): 492–501. https://doi.org/10.1111/j.1461-0248.2012.01763.x

Blount Z.D., Barrick J.E., Davidson C.J. & Lenski R.E. (2012). Genomic analysis of a key innovation in an experimental Escherichia coli population. Nature 489 (7417): 513–518. https://doi.org/10.1038/nature11514

Brans K.I., Govaert L., Engelen J.M., Gianuca A.T., Souffreau C. & De Meester L. (2017). Eco-evolutionary dynamics in urbanized landscapes: evolution, species sorting and the change in zooplankton body size along urbanization gradients. Philosophical Transactions of the Royal Society B 372 (1712): 20160030. https://doi.org/10.1098/rstb.2016.0030

Charmantier A., McCleery R.H., Cole L.R., Perrins C., Kruuk L.E. & Sheldon B.C. (2008). Adaptive phenotypic plasticity in response to climate change in a wild bird population. Science 320 (5877): 800–803. https://doi.org/10.1126/science.1157174

Chubiz L.M., Lee M.-C., Delaney N.F. & Marx C.J. (2012). Freq-seq: a rapid, cost-effective, sequencing-based method to determine allele frequencies directly from mixed populations. PLoS One 7 (10): e47959. https://doi.org/10.1371/journal.pone.0047959

Clutton-Brock T.H. & Pemberton J.M. (2004). Soay Sheep: Dynamics and Selection in an Island Population. Cambridge University Press.

Collins S. & Gardner A. (2009). Integrating physiological, ecological and evolutionary change: a Price equation approach. Ecology Letters 12 (8): 744–757. https://doi.org/10.1111/j.1461-0248.2009.01340.x

Cook-Patton S.C., McArt S.H., Parachnowitsch A.L., Thaler J.S. & Agrawal A.A. (2011). A direct comparison of the consequences of plant genotypic and species diversity on communities and ecosystem function. Ecology 92 (4): 915–923. https://doi.org/10.1890/10-0999.1

Coulson T. (2012). Integral projections models, their construction and use in posing hypotheses in ecology. Oikos 121 (9): 1337–1350. https://doi.org/10.1111/j.1600-0706.2012.00035.x

Coulson T. & Tuljapurkar S. (2008). The dynamics of a quantitative trait in an age-structured population living in a variable environment. The American Naturalist 172 (5): 599. https://doi.org/10.1086/591693

Coulson T., Tuljapurkar S. & Childs D.Z. (2010). Using evolutionary demography to link life history theory, quantitative genetics and population ecology. Journal of Animal Ecology 79 (6): 1226–1240. https://doi.org/10.1111/j.1365-2656.2010.01734.x

Coulson T., MacNulty D.R., Stahler D.R., von Holdt B., Wayne R.K. & Smith D.W. (2011). Modeling effects of environmental change on wolf population dynamics, trait evolution and life history. Science 334 (6060): 1275–1278. https://doi.org/10.1126/science.1209441

Day T. (2005). Modelling the ecological context of evolutionary change: déjà vue or something new? Ecological Paradigms lost: Routes of Theory Change 2, Chapter 13: 273–310. https://doi.org/10.1016/B978-012088459-9/50015-7

Day T. & Gandon S. (2006). Insights from Price’s equation into evolutionary. Disease Evolution: Models, Concepts, and Data Analyses 71: 23–44.

Day T., Pritchard J. & Schluter D. (1994). A comparison of two sticklebacks. Evolution 48 (5) : 1723–1734. https://doi.org/10.1111/j.1558-5646.1994.tb02208.x

De Meester L., Louette G., Duvivier C., Van Damme C. & Michels E. (2007). Genetic composition of resident populations influences establishment success of immigrant species. Oecologia 153 (2): 431–440. https://doi.org/10.1007/S00442-007-0721-3

Deraison H., Badenhausser I., Börger L. & Gross N. (2015). Herbivore effect traits and their impact on plant community biomass: an experimental test using grasshoppers. Functional Ecology 29, 5, 650–661. https://doi.org/10.1111/1365-2435.12362

Des Roches S., Post D.M., Turley N.E., Bailey J.K., Hendry A.P., Kinnison M.T., Schweitzer J.A. & Palkovacs E.P. (2018). The ecological importance of intraspecific variation. Nature Ecology & Evolution 2 (1): 57. https://doi.org/10.1038/s41559-017-0402-5

DeWitt T.J. & Langerhans R.B. (2003). Multiple prey traits, multiple predators: keys to understanding complex community dynamics. Journal of Sea Research 49 (2): 143–155. https://doi.org/10.1016/S1385-1101(02)00220-4

DeWitt T.J., Sih A. & Wilson D.S. (1998). Costs and limits of phenotypic plasticity. Trends in Ecology & Evolution 13 (2): 77–81. https://doi.org/10.1016/S0169-5347(97)01274-3

Dinh Van K., Janssens L., Debecker S. & Stoks R. (2014). Temperature-and latitude-specific individual growth rates shape the vulnerability of damselfly larvae to a widespread pesticide. Journal of Applied Ecology 51 (4): 919–928. https://doi.org/10.1111/1365-2664.12269

Easterling M.R., Ellner S.P. & Dixon P.M. (2000). Size-specific sensitivity: applying a new structured population model. Ecology 81 (3): 694–708. https://doi.org/10.1890/0012-9658(2000)081[0694:SSSAAN]2.0.CO;2

Elena S. & Lenski R. (2003). Microbial genetics: Evolution experiments with microorganisms: the dynamics and genetic bases of adaptation. Nature Reviews Genetics 4: 457–469. https://doi.org/10.1038/nrg1088

Ellner S.P., Geber M.A. & Hairston N.G. (2011). Does rapid evolution matter? Measuring the rate of contemporary evolution and its impacts on ecological dynamics. Ecology Letters 14 (6): 603–614. https://doi.org/10.1111/j.1461-0248.2011.01616.x

Etterson, J. R. & Shaw R. G. (2001). Constraint to adaptive evolution in response to global warming. Science 294, 5540, 151–154. https://doi.org/10.1126/science.1063656

Ezard T.H.G., Steeve D.C. & Pelletier F. (2009). Eco-evolutionary dynamics: disentangling phenotypic, environmental and population fluctuations. Philosophical Transactions of the Royal Society of London B: Biological Sciences 364 (1523): 1491–1498. https://doi.org/10.1098/rstb.2009.0006

Farkas T.E., Mononen T., Comeault A.A., Hanski I. & Nosil P. (2013). Evolution of camouflage drives rapid ecological change in an insect community. Current Biology 23 (19): 1835–1843. https://doi.org/10.1016/j.cub.2013.07.067

Fiegna F., Scheuerl T., Moreno-Letelier A., Bell T. & Barraclough T.G. (2015). Saturating effects of species diversity on life-history evolution in bacteria. Proceedings of the Royal Society B: Biological Sciences 282: 20151794. https://doi.org/10.1098/rspb.2015.1794

Fisher R. (1930). Genetics, mathematics, and natural selection. Nature 126: 805–806. https://doi.org/10.1038/126805a0

Fisher R.A. (1941). Average excess and average effect of a gene substitution. Annals of Human Genetics 11 (1): 53–63. https://doi.org/10.1111/j.1469-1809.1941.tb02272.x

Fox J.W. (2006). Using the Price equation to partition the effects of biodiversity loss on ecosystem function. Ecology 87 (11): 2687–2696. https://doi.org/10.1890/0012-9658(2006)87[2687:UTPETP]2.0.CO;2

Fox J.W. & Harder L.D. (2015). Using a “time machine” to test for local adaptation of aquatic microbes to temporal and spatial environmental variation. Evolution 69 (1): 136–145. https://doi.org/10.1111/evo.12543

Fox J.W. & Harpole W.S. (2008). Revealing how species loss affects ecosystem function: the trait-based Price equation partition. Ecology 89 (1): 269–279. https://doi.org/10.1890/07-0288.1

Fox J.W. & Kerr B. (2012). Analyzing the effects of species gain and loss on ecosystem function using the extended Price equation partition. Oikos 121 (2): 290–298. https://doi.org/10.1111/j.1600-0706.2011.19656.x

Frank S.A. (2012). Natural selection. IV. the Price equation. Journal of Evolutionary Biology 25 (6): 1002–1019. https://doi.org/10.1111/j.1420-9101.2012.02498.x

Fronhofer E., Gut S. & Altermatt F. (2017). Evolution of density- dependent movement during experimental range expansions. Journal of Evolutionary Biology 30 (12): 2165–2176. https://doi.org/10.1111/jeb.13182

Fukami T., Beaumont H.J., Zhang X.-X. & Rainey P.B. (2007). Immigration history controls diversification in experimental adaptive radiation. Nature 446, 7134, 436–439. https://doi.org/10.1038/nature05629

Fussmann G., Loreau M. & Abrams P. (2007). Eco-evolutionary dynamics of communities and ecosystems. Functional Ecology 21 (3): 465–477.

Gasol J.M., Comerma M., García J.C., Armengol J., Casamayor E.O., Kojecká P. & Šimek K. (2002). A transplant experiment to identify the factors controlling bacterial abundance, activity, production, and community composition in a eutrophic canyon-shaped reservoir. Limnology and Oceanography 47 (1): 62–77. https://doi.org/10.4319/lo.2002.47.1.0062

Genung M.A., Schweitzer J.A., Ubeda F., Fitzpatrick B.M., Pregitzer C.C., Felker-Quinn E. & Bailey J.K. (2011). Genetic variation and community change–selection, evolution, and feedbacks. Functional Ecology 25 (2): 408–419. https://doi.org/10.1111/j.1365-2435.2010.01797.x

Govaert L., Pantel J.H. & De Meester L. (2016). Eco-evolutionary partitioning metrics: assessing the importance of ecological and evolutionary contributions to population and community change. Ecology Letters 19 (8): 839–853. https://doi.org/10.1111/ele.12632

Grafen A. (2000). Developments of the Price equation and natural selection under uncertainty. Proceedings of the Royal Society of London B: Biological Sciences 267 (1449): 1223–1227. https://doi.org/10.1098/rspb.2000.1131

Grafen A. (2015). Biological fitness and the Price equation in class-structured populations. Journal of Theoretical Biology 373: 62–72. https://doi.org/10.1016/j.jtbi.2015.02.014

Grant P.R. & Grant B.R. (2002). Unpredictable evolution in a 30-year study of Darwin’s finches. science 296 (5568): 707–711. https://doi.org/10.1126/science.1070315

Gravel D., Bell T., Barbera C., Bouvier T., Pommier T., Venail P. & Mouquet N. (2011). Experimental niche evolution alters the strength of the diversity–productivity relationship. Nature 469 (7328): 89–92. https://doi.org/10.1038/nature09592

Hairston N.G., Ellner S.P., Geber M.A., Yoshida T. & Fox J.A. (2005). Rapid evolution and the convergence of ecological and evolutionary time. Ecology Letters 8 (10): 1114–1127. https://doi.org/10.1111/j.1461-0248.2005.00812.x

Hamilton W.D. (1975). Innate social aptitudes of man: an approach from evolutionary genetics. Biosocial Anthropology 133: 115–132.

Harden J.W. (1982). A quantitative index of soil development from field descriptions: Examples from a chronosequence in central California. Geoderma 28 (1): 1–28. https://doi.org/10.1016/0016-7061(82)90037-4

Harmon L.J., Matthews B., Des Roches S., Chase J.M., Shurin J.B. & Schluter D. (2009). Evolutionary diversification in stickleback affects ecosystem functioning. Nature 458 (7242): 1167–1170. https://doi.org/10.1038/nature07974

Hekstra D.R. & Leibler S. (2012). Contingency and statistical laws in replicate microbial closed ecosystems. Cell 149 (5): 1164–1173. https://doi.org/10.1016/j.cell.2012.03.040

Henderson C.R. (1950). Estimation of genetic parameters. The Annals of Mathematical Statistics 21: 309–310.

Hendry A. (2013). Key questions in the genetics and genomics of eco-evolutionary dynamics. Heredity 111 (6): 456–466. https://doi.org/10.1038/hdy.2013.75

Hendry A.P. (2017). Eco-Evolutionary Dynamics. Princeton University Press.

Hine E., Chenoweth S.F., Rundle H.D. & Blows M.W. (2009). Characterizing the evolution of genetic variance using genetic covariance tensors. Philosophical Transactions of the Royal Society of London B: Biological Sciences 364(1523): 1567–1578. https://doi.org//10.1098/rstb.2008.0313

Johnson M.T. & Stinchcombe J.R. (2007). An emerging synthesis between community ecology and evolutionary biology. Trends in Ecology & Evolution 22 (5): 250–257. https://doi.org/10.1016/j.tree.2007.01.014

Jones A.G., Small C.M., Paczolt K.A. & Ratterman N.L. (2010). A practical guide to methods of parentage analysis. Molecular Ecology Resources 10 (1): 6–30.n https://doi.org/10.1111/j.1755-0998.2009.02778.x

Kawecki T.J. & Ebert D. (2004). Conceptual issues in local adaptation. Ecology Letters 7 (12): 1225–1241. https://doi.org/10.1111/j.1461-0248.2004.00684.x

Kerfoot W.C. & Weider L.J. (2004). Experimental paleoecology (resurrection ecology): chasing Van Valen’s Red Queen hypothesis. Limnology and Oceanography 49 (4, part 2): 1300–1316. https://doi.org/10.4319/lo.2004.49.4_part_2.1300

Kerfoot W.C., Robbins J.A. & Weider L.J. (1999). A new approach to historical recon-struction: combining descriptive and experimental paleolimnology. Limnology and Oceanography 44 (5): 1232–1247. https://doi.org/10.4319/lo.1999.44.5.1232

Kerr B. & Godfrey-Smith P. (2009). Generalization of the Price equation for evolutionary change. Evolution: International Journal of Organic Evolution 63 (2): 531–536. https://doi.org/10.1111/j.1558-5646.2008.00570.x

Kruuk L.E., Slate J. & Wilson A.J. (2008). New answers for old questions: the evolutionary quantitative genetics of wild animal populations. Annual Review of Ecology, Evolution, and Systematics 39. https://doi.org/10.1146/annurev.ecolsys.39.110707.173542

Lajoie G. & Vellend M. (2015). Understanding context dependence in the contribution of intraspecific variation to community trait–environment matching. Ecology 96 (11): 2912–2922. https://doi.org/10.1890/15-0156.1

Lande R. & Arnold S.J. (1983). The measurement of selection on correlated characters. Evolution 37 (6): 1210–1226. https://doi.org/10.1111/j.1558-5646.1983.tb00236.x

Lawrence D., Fiegna F., Behrends V., Bundy J.G., Phillimore B., Bell T. & Barraclough T.G. (2012). Species interactions alter evolutionary responses to a novel environment. PLoS Biol 10 (5): e1001330. https://doi.org/10.1371/journal.pbio.1001330

Lennon J.T. & Martiny J.B. (2008). Rapid evolution buffers ecosystem impacts of viruses in a microbial food web. Ecology Letters 11 (11): 1178–1188. https://doi.org/10.1111/j.1461-0248.2008.01225.x

Lenski R.E., Rose M.R., Simpson S.C. & Tadler S.C. (1991). Long- term experimental evolution in Escherichia coli. I. adaptation and divergence during 2,000 generations. The American Naturalist 138 (6): 1315–1341. https://doi.org/10.1086/285289

Lepš J., de Bello F., Šmilauer P. & Doležal J. (2011). Community trait response to environment: disentangling species turnover vs intraspecific trait variability effects. Ecography 34 (5): 856–863. https://doi.org/10.1111/j.1600-0587.2010.06904.x

Levin S.A. (1972). A mathematical analysis of the genetic feedback mechanism. The American Naturalist 106 (948): 145–164. https://doi.org/10.1086/282758

Lewontin R. & Kojima K.-I. (1960). The evolutionary dynamics of complex polymorphisms. Evolution 14 (4): 458–472. https://doi.org/10.1111/j.1558-5646.1960.tb03113.x

Lion S. (2018). From the Price equation to the selection gradient in class-structured populations: a quasi-equilibrium route. Journal of theoretical biology 447C: 21–44. https://doi.org/10.1016/j.jtbi.2018.03.033

Loeuille N. (2010). Influence of evolution on the stability of ecological communities. Ecology Letters 13 (12): 1536–1545. https://doi.org/10.1111/j.1461-0248.2010.01545.x

Loeuille N. & Leibold M.A. (2008). Evolution in metacommunities: on the relative importance of species sorting and monopolization in structuring communities. The American Naturalist 171 (6): 788–799. https://doi.org/10.1086/587745

Luque V.J. (2017). One equation to rule them all: a philosophical analysis of the Price equation. Biology & Philosophy 32 (1): 97–125. https://doi.org/10.1007/s10539-016-9538-y

Lush J.L. (1947). Animal Breeding Plans. The Iowa State College Press.

Lynch M. & Walsh B. (1998). Genetics and Analysis of Quantitative Traits. Vol. 1. Sinauer Sunderland, MA.

Madritch M.D. & Lindroth R.L. (2011). Soil microbial communities adapt to genetic variation in leaf litter inputs. Oikos 120 (11): 1696–1704. https://doi.org/10.1111/j.1600-0706.2011.19195.x

Matthews B., Narwani A., Hausch S., Nonaka E., Peter H., Yamamichi M., Sullam K.E., Bird K.C., Thomas M.K., Hanley T.C. & Turner C.B. (2011). Toward an integration of evolutionary biology and ecosystem science. Ecology Letters 14 (7): 690–701. https://doi.org/10.1111/j.1461-0248.2011.01627.x

Merilä J. & Hendry A.P. (2014). Climate change, adaptation, and phenotypic plasticity: the problem and the evidence. Evolutionary applications 7 (1): 1–14. https://doi.org/10.1111/eva.12137

Merilä J., Sheldon B. & Kruuk L. (2001). Explaining stasis: microevolutionary studies in natural populations. Genetica 112 (1): 199–222. https://doi.org/10.1023/A:1013391806317

Metcalf C.J.E., Rose K.E., Childs D.Z., Sheppard A.W., Grubb P.J. & Rees M. (2008). Evolution of flowering decisions in a stochastic, density-dependent environment. Proceedings of the National Academy of Sciences 105 (30): 10466–10470. https://doi.org//10.1073/pnas.0800777105

Newman R.A. (1994). Genetic variation for phenotypic plasticity in the larval life history of spadefoot toads (Scaphiopus couchii). Evolution 48 (6): 1773–1785. https://doi.org/10.1111/j.1558-5646.1994.tb02213.x

Nooten S.S., Andrew N.R. & Hughes L. (2014). Potential impacts of climate change on insect communities: a transplant experiment. PLoS One 9 (1): e85987. https://doi.org/10.1371/journal.pone.0085987

Norberg J., Urban M.C., Vellend M., Klausmeier C.A. & Loeuille N. (2012). Eco-evolutionary responses of biodiversity to climate change. Nature Climate Change 2 (10): 747–751. https://doi.org/10.1038/nclimate1588

Nussey D.H., Clutton-Brock T.H., Elston D.A., Albon S.D. & Kruuk L.E. (2005a). Phenotypic plasticity in a maternal trait in red deer. Journal of Animal Ecology 74 (2): 387–396. https://doi.org/10.1111/j.1365-2656.2005.00941.x

Nussey D.H., Postma E., Gienapp P. & Visser M.E. (2005b). Selection on heritable phenotypic plasticity in a wild bird population. Science 310 (5746): 304– 306. https://doi.org/10.1126/science.1117004

Ozgul A., Tuljapurkar S., Benton T.G., Pemberton J.M., Clutton-Brock T.H. & Coulson T. (2009). The dynamics of phenotypic change and the shrinking sheep of St. Kilda. Science 325 (5939): 464–467. https://doi.org/10.1126/science.1173668

Ozgul A., Childs D.Z., Oli M.K., Armitage K.B., Blumstein D.T., Olson L.E., Tuljapurkar S. & Coulson T. (2010). Coupled dynamics of body mass and population growth in response to environmental change. Nature 466 (7305): 482. https://doi.org/10.1038/nature09210

Page K.M. & Nowak M.A. (2002). Unifying evolutionary dynamics. Journal of theoretical biology 219 (1): 93–98. https://doi.org/10.1006/jtbi.2002.3112

Pantel J.H., Leibold M.A. & Juenger T.E. (2011). Population differentiation in Daphnia alters community assembly in experimental ponds. The American Naturalist 177 (3): 314–322. https://doi.org/10.1086/658345

Pantel J.H., Duvivier C. & De Meester L. (2015). Rapid local adaptation mediates zooplankton community assembly in experimental mesocosms. Ecology Letters 18 (10): 992–1000. https://doi.org/10.1111/ele.12480

Pelletier F., Garant D. & Hendry A. (2009). Eco-evolutionary dynamics. Philosophical Transactions of the Royal Society B: Biological Sciences 364: 1483–1489. https://doi.org/10.1098/rstb.2009.0027

Pickett S.T. (1989). Space-for-time substitution as an alternative to long-term studies. In: Likens G.E. (ed.) Long-Term Studies in Ecology: 110–135. Springer. https://doi.org/10.1007/978-1-4615-7358-6_5

Pigéon G., Ezard T.H., Festa-Bianchet M., Coltman D.W. & Pelletier F. (2017). Fluctuating effects of genetic and plastic changes in body mass on population dynamics in a large herbivore. Ecology 98 (9): 1–40. https://doi.org/10.1002/ecy.1940

Pigliucci M. (2001). Phenotypic Plasticity: beyond Nature and Nurture. JHU Press.

Pimentel D. (1961). Animal population regulation by the genetic feed-back mechanism. The American Naturalist 95 (881): 65–79. https://doi.org/10.1086/282160

Pimentel D. (1968). Population regulation and genetic feedback. Science 159 (3822): 1432–1437. https://doi.org/10.1126/science.159.3822.1432

Post D.M. & Palkovacs E.P. (2009). Eco-evolutionary feedbacks in community and ecosystem ecology: interactions between the ecological theatre and the evolutionary play. Philosophical Transactions of the Royal Society B: Biological Sciences 364 (1523): 1629–1640. https://doi.org/10.1098/rstb.2009.0012

Price G.R. (1970). Selection and covariance. Nature 227: 520–21. https://doi.org/10.1038/227520a0

Price G.R. (1972). Extension of covariance selection mathematics. Annals of Human Genetics 35 (4): 485–490. https://doi.org/10.1111/j.1469-1809.1957.tb01874.x

Queller D.C. (2017). Fundamental theorems of evolution. The American Naturalist 189 (4): 345–353. https://doi.org/10.1086/690937

Réale D., McAdam A.G., Boutin S. & Berteaux D. (2003). Genetic and plastic responses of a northern mammal to climate change. Proceedings of the Royal Society of London B: Biological Sciences 270 (1515): 591–596. https://doi.org/10.1098/rspb.2002.2224

Reinemann S.A., Porinchu D.F., Bloom A.M., Mark B.G. & Box J.E. (2009). A multi-proxy paleolimnological reconstruction of holocene climate conditions in the Great Basin, United States. Quaternary Research 72 (3): 347–358. https://doi.org/10.1016/j.yqres.2009.06.003

Reznick D.N. (2013). A critical look at reciprocity in ecology and evolution: introduction to the symposium. The American Naturalist 181: S1–S8. https://doi.org/10.1086/670030

Rice S.H. (2008). A stochastic version of the Price equation reveals the interplay of deterministic and stochastic processes in evolution. BMC Evolutionary Biology 8 (1): 262–278. https://doi.org/10.1186/1471-2148-8-262

Rice S.H. & Papadopoulos A. (2009). Evolution with stochastic fitness and stochastic migration. PloS One 4 (10): e7130. https://doi.org/10.1371/journal.pone.0007130

Robertson A. (1966). A mathematical model of the culling process in dairy cattle. Animal Science 8 (1): 95–108. https://doi.org/10.1017/S0003356100037752

Robertson A. (1968). The spectrum of genetic variation. In: Lewontin R.C. (ed.), Population Biology and Evolution: 5–16.

Roff D.A. (2007). A centennial celebration for quantitative genetics. Evolution: International Journal of Organic Evolution 61 (5): 1017–1032. https://doi.org/10.1111/j.1558-5646.2007.00100.x

Schoener T.W. (2011). The newest synthesis: understanding the interplay of evolutionary and ecological dynamics. Science 331 (6016): 426–429. https://doi.org/10.1126/science.1193954

Schweitzer J.A., Bailey J.K., Hart S.C. & Whitham T.G. (2005). Nonadditive effects of mixing cottonwood genotypes on litter decomposition and nutrient dynamics. Ecology 86 (10): 2834–2840. https://doi.org/10.1890/04-1955

Shefferson R.P. & Salguero-Gómez R. (2015). Eco-evolutionary dynamics in plants: interactive processes at overlapping time-scales and their implications. Journal of Ecology 103 (4): 789–797. https://doi.org/10.1111/1365-2745.12432

Slatkin M. (2008). Linkage disequilibrium understanding the evolutionary past and mapping the medical future. Nature Reviews Genetics 9 (6): 477–485. https://doi.org/10.1038/nrg2361

Smallegange I.M. & Coulson T. (2013). Towards a general, population- level understanding of eco-evolutionary change. Trends in Ecology & Evolution 28 (3): 143–148. https://doi.org/10.1016/j.tree.2012.07.021

Spaak J.W., Baert J.M., Baird D.J., Eisenhauer N., Maltby L., Pomati F., Radchuk V., Rohr J.R., Van den Brink P.J. & De Laender F. (2017). Shifts of community composition and population density substantially affect ecosystem function despite invariant richness. Ecology Letters 20 (10): 1315–1324. https://doi.org/10.1111/ele.12828

Stevens P. & Walker T. (1970). The chronosequence concept and soil formation. The Quarterly Review of Biology 45 (4): 333–350. https://doi.org/10.1086/406646

Stoks R., Govaert L., Pauwels K., Jansen B. & De Meester L. (2016). Resurrecting complexity: the interplay of plasticity and rapid evolution in the multiple trait response to strong changes in predation pressure in the water flea Daphnia magna. Ecology Letters 19 (2): 180–190. https://doi.org/10.1111/ele.12551

Symstad A.J., Tilman D., Willson J. & Knops J.M. (1998). Species loss and ecosystem functioning: effects of species identity and community composition. Oikos 81 (2): 389–397. https://doi.org/10.2307/3547058

terHorst C.P., Lennon J.T. & Lau J.A. (2014). The relative importance of rapid evolution for plant-microbe interactions depends on ecological context. Proceedings of the Royal Society of London B: Biological Sciences 281 (1785): 20140028. https://doi.org/10.1098/rspb.2014.0028

Traill L.W., Schindler S. & Coulson T. (2014). Demography, not inheritance, drives phenotypic change in hunted bighorn sheep. Proceedings of the National Academy of Sciences 111 (36): 13223–13228. https://doi.org/10.1073/pnas.1407508111

Turcotte M.M., Reznick D.N. & Hare J.D. (2011). The impact of rapid evolution on population dynamics in the wild: experimental test of eco-evolutionary dynamics. Ecology Letters 14 (11): 1084–1092. https://doi.org/10.1111/j.1461-0248.2011.01676.x

Urban M.C. (2013) Evolution mediates the effects of apex predation on aquatic food webs. Proceedings of the Royal Society B: Biological Sciences 280: 20130859. https://doi.org/10.1098/rspb.2013.0859

Urban M.C. & De Meester L. (2009). Community monopolization: local adaptation enhances priority effects in an evolving metacommunity. Proceedings of the Royal Society of London B: Biological Sciences 276 (1676): 4129–4138. https://doi.org/10.1098/rspb.2009.1382

Urban M.C., Leibold M.A., Amarasekare P., De Meester L., Gomulkiewicz R., Hochberg M.E., Klausmeier C.A., Loeuille N., de Mazancourt C., Norberg J., Pantel J.H., Strauss S.Y., Vellend M. & Wade M.J. (2008). The evolutionary ecology of metacommunities. Trends in Ecology & Evolution 23 (6): 311–317. https://doi.org/10.1016/j.tree.2008.02.007

van Benthem K.J., Bruijning M., Bonnet T., Jongejans E., Postma E. & Ozgul A. (2017). Disentangling evolutionary, plastic and demographic processes underlying trait dynamics: a review of four frameworks. Methods in Ecology and Evolution 8 (1): 75–85. https://doi.org/10.1111/2041-210X.12627

Van Doorslaer W., Stoks R., Jeppesen E. & De Meester L. (2007). Adaptive microevolutionary responses to simulated global warming in Simocephalus vetulus: a mesocosm study. Global Change Biology 13 (4): 878–886. https://doi.org/10.1111/j.1365-2486.2007.01317.x

Van Velzen E. & Gaedke U. (2017). Disentangling eco-evolutionary dynamics of predator-prey coevolution: the case of antiphase cycles. Scientific Reports 7 (1): 17125. https://doi.org/10.1038/s41598-017-17019-4

Via S. & Hawthorne D. (2005). Back to the future: genetic correlations, adaptation and speciation. Genetics of Adaptation 123 (1–2): 147–156. https://doi.org/10.1007/s10709-004-2731-y

Via S. & Lande R. (1985). Genotype-environment interaction and the evolution of phenotypic plasticity. Evolution 39 (3): 505–522. https://doi.org/10.1111/j.1558-5646.1985.tb00391.x

Via S., Gomulkiewicz R., De Jong G., Scheiner S.M., Schlichting C.D. & Van Tienderen P.H. (1995). Adaptive phenotypic plasticity: consensus and controversy. Trends in Ecology & Evolution 10 (5): 212–217. https://doi.org/10.1016/S0169-5347(00)89061-8

Wagg C., Bender S.F., Widmer F. & van der Heijden M.G. (2014). Soil biodiversity and soil community composition determine ecosystem multifunctionality. Proceedings of the National Academy of Sciences 111 (14): 5266–5270. https://doi.org/10.1073/pnas.1320054111

Walker L.R., Wardle D.A., Bardgett R.D. & Clarkson B.D. (2010). The use of chronosequences in studies of ecological succession and soil development. Journal of Ecology 98 (4): 725–736. https://doi.org/10.1111/j.1365-2745.2010.01664.x

Weider L.J., Jeyasingh P.D. & Looper K.G. (2008). Stoichiometric differences in food quality: impacts on genetic diversity and the coexistence of aquatic herbivores in a Daphnia hybrid complex. Oecologia 158 (1): 47–55. https://doi.org/10.1007/s00442-008-1126-7

Williams J.L., Auge H. & Maron J.L. (2008). Different gardens, different results: native and introduced populations exhibit contrasting phenotypes across common gardens. Oecologia 157 (2): 239–248. https://doi.org/10.1007/s00442-008-1075-1

Wilson A.J., Reale D., Clements M.N., Morrissey M.M., Postma E., Walling C.A., Kruuk L.E.B. & Nussey D.H. (2010). An ecologist’s guide to the animal model. Journal of Animal Ecology 79 (1): 13–26. https://doi.org//10.1111/j.1365-2656.2009.01639.x

Yoshida T., Jones L.E., Ellner S.P., Fussmann G.F. & Hairston N.G. (2003). Rapid evolution drives ecological dynamics in a predator–prey system. Nature 424 (6946): 303–306. https://doi.org/10.1038/nature01767

Yoshida T., Ellner S.P., Jones L.E., Bohannan B.J., Lenski R.E. & Hairston Jr N.G. (2007). Cryptic population dynamics: rapid evolution masks trophic interactions. PLoS Biology 5 (9): e235. https://doi.org/10.1371/journal.pbio.0050235

Zheng X.-X., Liu, G.-H., Fu, B.-J., Jin T.-T. & Liu Z.-F. (2010). Effects of biodiversity and plant community composition on productivity in semiarid grasslands of Hulunbeir, Inner Mongolia, China. Annals of the New York Academy of Sciences 1195 (1): E52–E64. https://doi.org/10.1111/j.1749-6632.2009.05405.x




DOI: https://doi.org/10.26496/bjz.2018.25

Refbacks

  • There are currently no refbacks.