Effects of an experimental resource pulse on the macrofaunal assemblage inhabiting seagrass macrophytodetritus

François Remy, Sylvie Gobert, Gilles Lepoint

Abstract


Physical disturbances and resource pulses are major structuring drivers of terrestrial and aquatic ecosystems. The accumulations of exported dead leaves from the Neptune grass, Posidonia oceanica (L.) Delile are ephemeral and highly dynamic detrital habitats offering food sources and shelter for vagile macrofauna community. These habitats are frequently subject to wind and storms which can add “new” detrital material to previous accumulations; these can be defined as resource pulses and could potentially impact the associated macrofauna. This study assesses the impact of an experimental resource pulse on the macrofauna associated with exported P. oceanica litter accumulations. The experimental design consisted of two pulse treatments (the addition of dead leaves with and without the associated fauna), and two controls (one procedural, and one total control), where the added material was left underwater for 14 days. Invertebrates then present in the sampled detritus were all identified and counted. Our data suggest that the responses of these invertebrates to resource pulses present intermediate characteristics between aquatic and terrestrial ecosystems responses. Inputting a moderate amount of dead P. oceanica leaves into experimental mesocosms had a non-negligible impact and rapidly affected the macrofauna community. Specialist detritivores species were boosted while herbivore/detritivore species dramatically decreased. Predators also showed a modest but significant density increase, demonstrating the fast propagation of the pulse response throughout the entire community and through several trophic levels. Strict hypoxia-tolerant species were also only observed in the treated mesocosms, indicating the strong influence of resource pulses on physico-chemical conditions occurring inside litter accumulations.

Keywords


resource pulses; Posidonia oceanica; macrofauna; experimental ecology; macro-phytodetritus

Full Text:

PDF

References


Anderson M., Gorley R.N. & Clarke R.K. (2008b). Permanova+ for Primer: Guide to Software and Statistical Methods. Available from http://www.primer-e.com/permanova.htm [accessed 30 Jan. 2017].

Anderson W.B., Wait D.A. & Stapp P. (2008a). Resources from another place and time: Responses to pulses in a spatially subsidized system. Ecology 89 (3): 660–670. https://doi.org/10.1890/07-0234.1

Anesio A., Abreu P. & Biddanda B. (2003). The role of free and attached microorganisms in the decomposition of estuarine macrophyte detritus. Estuarine, Coastal and Shelf Science 56 (2): 197–201. https://doi.org/10.1016/S0272-7714(02)00152-X

Boudouresque C.F., Bernard G., Bonhomme P., Charbonnel E., Diviacco G., Meinesz A., Pergent G., Pergent-Martini C., Ruitton S. & Tunesi L. (2006). Préservation et conservation des herbiers à Posidonia oceanica. Ramoge publications, Monaco: 1–200.

Chesson P., Gebauer R.L.E., Schwinning S., Huntly N., Wiegand K., Ernest M.S.K., Sher A., Novoplansky A. & Weltzin J.F. (2004). Resource pulses, species interactions, and diversity maintenance in arid and semi-arid environments. Oecologia 141 (2): 236–253. https://doi.org/10.1007/s00442-004-1551-1

Clarke K.R. & Gorleyr N. (2006). V6: User manual/tutorial. Primer-E Ltd., Plymouth: 93.

Dimech M., Borg J.A. & Schembri P.J. (2006). Motile macroinvertebrate assemblages associated with submerged Posidonia oceanica litter accumulations. Biologia Marina Mediterranea 13: 130–133.

Gallmetzer I., Pflugfelder B., Zekely J. & Ott J.A. (2005). Macrofauna diversity in Posidonia oceanica detritus: distribution and diversity of mobile macrofauna in shallow sublittoral accumulations of Posidonia oceanica detritus. Marine Biology 147 (2): 517–523. https://doi.org/10.1007/s00227-005-1594-9

Giller P.S. (1996). The diversity of soil communities, the ‘poor man’s tropical rainforest’. Biodiversity and Conservation 5 (2): 135–168. https://doi.org/10.1007/BF00055827

Gobert S (2002). Variations spatiale et temporelle de l’herbier à Posidonia oceanica (L.) Delile. Université de Liège. PhD Thesis. University of Liège, Liège, 207 pp.

Holt R.D. (2008). Theoretical perspectives on resource pulses. Ecology 89: 671–681. https://doi.org/10.1890/07-0348.1

Lake P.S. (2000). Disturbance, patchiness, and diversity in streams. Journal of the North American Benthological Society 19 (4): 573–592. https://doi.org/10.2307/1468118

Lemke A.M., Lemke M.J. & Benke A.C. (2007). Importance of detrital algae, bacteria, and organic matter to littoral microcrustacean growth and reproduction. Limnology and Oceanography 52: 2164–2176. https://doi.org/10.4319/lo.2007.52.5.2164

Lepoint G., Cox A.-S., Dauby P., Poulicek M. & Gobert S. (2006). Food sources of two detritivore amphipods associated with the seagrass Posidonia oceanica leaf litter. Marine Biology Research 2 (5): 355–365. https://doi.org/10.1080/17451000600962797

Leroux S.J. & Loreau M. (2012). Dynamics of Reciprocal Pulsed Subsidies in Local and Meta-Ecosystems. Ecosystems 15 (1): 48–59. https://doi.org/10.1007/s10021-011-9492-0

Levi T., Kilpatrick A.M., Barfield M., Holt R.D., Mangel M. & Wilmers C.C. (2015). Threshold levels of generalist predation determine consumer response to resource pulses. Oikos 124: 1436–1443. https://doi.org/10.1111/oik.01487

Longo E., Verschut T., Carrozzo L., Zotti M., Mancinelli G. (2016). Inter-and intra-specific variation in movement behaviour of benthic macroinvertebrates from a transitional habitat: a laboratory experiment. Rendiconti Lincei 27 (2): 281–290. https://doi.org/10.1007/s12210-015-0475-5

Mancinelli G. (2012). To bite, or not to bite? A quantitative comparison of foraging strategies among three brackish crustaceans feeding on leaf litters. Estuarine, Coastal and Shelf Science 110: 125–133. https://doi.org/10.1016/j.ecss.2012.04.002

Mancinelli G. & Rossi L. (2002). The influence of allochthonous leaf detritus on the occurrence of crustacean detritivores in the soft-bottom macrobenthos of the Po River Delta Area (northwestern Adriatic Sea). Estuarine, Coastal and Shelf Science 54 (5): 849–861. https://doi.org/10.1006/ecss.2001.0861

Mancinelli G., Sabetta L. & Basset A. (2005). Short-term patch dynamics of macroinvertebrate colonization on decaying reed detritus in a Mediterranean lagoon (Lake Alimini Grande, Apulia, SE Italy). Marine Biology 148 (2): 271–283. https://doi.org/10.1007/s00227-005-0091-5

Mancinelli G., Sabetta L. & Basset A. (2007). Colonization of ephemeral detrital patches by vagile macroinvertebrates in a brackish lake: a body size-related process? Oecologia 151 (2): 292–302. https://doi.org/10.1007/s00442-006-0586-x

Mancinelli G., Vignes F., Sangiorgio F., Mastrolia A. & Basset A. (2009). On the potential contribution of microfungi to the decomposition of reed leaf detritus in a coastal lagoon: A laboratory and field experiment. International Review of Hydrobiology 94 (4): 419–435. https://doi.org/10.1002/iroh.200811164

Mascart T., Lepoint G., Deschoemaeker S., Binard M., Remy F. & De Troch M. (2015a). Seasonal variability of meiofauna, especially harpacticoid copepods, in Posidonia oceanica macrophytodetritus accumulations. Journal of Sea Research 95: 149–160. https://doi.org/10.1016/j.seares.2014.07.009

Mascart T., Agusto L., Lepoint G., Remy F. & De Troch M. (2015b). How do harpacticoid copepods colonize detrital seagrass leaves? Marine Biology 162 (5): 929–943. https://doi.org/10.1007/s00227-015-2632-x

Mateo M.A. & Romero J. (1997). Detritus dynamics in the seagrass Posidonia oceanica: Elements for an ecosystem carbon and nutrient budget. Marine Ecology Progress Series 151: 43–53. https://doi.org/10.3354/meps151043

Mateo M.Á, Sánchez-Lizaso J-L, Romero J (2003). Posidonia oceanica ‘banquettes’: a preliminary assessment of the relevance for meadow carbon and nutrients budget. Estuarines Coastal Shelf Sciences 56: 85–90. https://doi.org/10.1016/S0272-7714(02)00123-3

Michel L, Dauby P., Gobert S., Graeve M., Nyssen F., Thelen N. & Lepoint G. (2015). Dominant amphipods of Posidonia oceanica seagrass meadows display considerable trophic diversity. Marine Ecology 36 (4): 969–981. https://doi.org/10.1111/maec.12194

Mölter T., Schindler D., Albrecht A.T. & Kohne U. (2016). Review on the projections of future storminess over the North Atlantic European Region. Atmosphere 7 (4): 60. https://doi.org/10.3390/atmos7040060

Moore J.C., Berlow E.L., Coleman D.C., Ruiter P.C., Dong Q., Hastings A., Johnson N.C., McCann K.S., Melville K., Morin P.J., Nadelhoffer K., Rosemond A.D., Post D.M., Sabo J.L., Scow K.M., Vanni M.J. & Wall D.H. (2004). Detritus, trophic dynamics and biodiversity. Ecology Letters 7 (7): 584–600. https://doi.org/10.1111/j.1461-0248.2004.00606.x

Nowlin W.H., Vanni M.J. & Yang L.H. (2008). Comparing resource pulses in aquatic and terrestrial ecosystems. Ecology 89 (3): 647–659. https://doi.org/10.1890/07-0303.1

Okey T.A. (2003). Macrobenthic colonist guilds and renegades in Monterey Canyon (USA) drift algae: Partitioning multidimensions. Ecological Monographs 73 (3): 415–440. https://doi.org/10.1890/01-4088

Ostfeld R.S. & Keesing F. (2000). Pulsed resources and community dynamics of consumers in terrestrial ecosystems. Trends in Ecology & Evolution 15 (6): 232–237. https://doi.org/10.1016/S0169-5347(00)01862-0

Pasqualini V., Pergent-Martini C., Clabaut P. & Pergent G. (1998). Mapping of Posidonia oceanica using Aerial Photographs and Side Scan Sonar: Application off the Island of Corsica (France). Estuarine, Coastal and Shelf Science 47 (3): 359–367. https://doi.org/10.1006/ecss.1998.0361

Remy F. (2016) Characterization, dynamics and trophic ecology of macrofauna associated to seagrass macrophytodetritus accumulations (Calvi Bay, Mediterranean Sea). PhD Thesis. University of Liège, Liège, 285 pp.

Romero J., Pergent G., Pergent-Martini C., Mateo M.A. & Regnier C. (1992). The detritic compartment in a Posidonia oceanica meadow: litter features, decomposition rates, and mineral stocks. PSZNI Marine Ecology 13: 69–83. https://doi.org/10.1111/j.1439-0485.1992.tb00341.x

Sturaro N., Caut S., Gobert S., Bouquegneau J.-M. & Lepoint G. (2010). Trophic diversity of idoteids (Crustacea, Isopoda) inhabiting the Posidonia oceanica litter. Marine Biology 157 (2): 237–247. https://doi.org/10.1007/s00227-009-1311-1

Sturaro N., Lepoint G., Pérez-Perera A., Vermeulen S., Pieraugusto P., Navone A. & Gobert S. (2014). Seagrass amphipod assemblages in a Mediterranean marine protected area: a multiscale approach. Marine Ecology Progress Serie 506: 175–192. https://doi.org/10.3354/meps10776

Valentine J.F. & Heck K.L. (1999). Seagrass herbivory: evidence for the continued grazing of marine grasses. Marine Ecology Progress Series 176: 291–302. https://doi.org/10.3354/meps176291

Verschut T.A., Meineri E. & Basset A. (2015). Biotic interactions affect the colonization behavior of aquatic detritivorous macroinvertebrates in a heterogeneous environment. Estuarine, Coastal and Shelf Science 157: 120–128. https://doi.org/10.1016/j.ecss.2015.03.014

Yang L.H. (2006). Interactions between a detrital resource pulse and a detritivore community. Oecologia 147: 522–532. https://doi.org/10.1007/s00442-005-0276-0

Yang L.H., Bastow J.L., Spence K.O. & Wright A.N. (2008). What can we learn from resource pulses? Ecology 89 (3): 621–634. https://doi.org/10.1890/07-0175.1

Yang L.H., Edwards K.F., Byrnes J.E., Bastow J.L., Wright A.N. & Spence K.O. (2010). A meta-analysis of resource pulse–consumer interactions. Ecological Monographs 80 (1): 125–151. https://doi.org/10.1890/08-1996.1

Yee D.A. & Juliano S.A. (2012). Concurrent effects of resource pulse amount, type, and frequency on community and population properties of consumers in detritus-based systems. Oecologia 169 (2): 511–522. https://doi.org/10.1007/s00442-011-2209-4




DOI: https://doi.org/10.26496/bjz.2017.1

Refbacks

  • There are currently no refbacks.